SEASONAL CLIMATE FORECASTING TO BENEFIT BUSINESS AND SOCIETY

Dr Mark Saunders

Head of Seasonal Forecasting Department of Space and Climate Physics University College London

UCL Lunch Hour Lecture 13th November 2001

University Department

Department of Space and Climate Physics University College London HOLMBURY ST MARY Dorking Surrey RH5 6NT UK

Presentation Structure

- **1. Seasonal Climate Prediction**
- 2. Impacts of Seasonal Weather on Business and Society
- **3. Skill Examples:** ENSO, Hurricanes, UK Temperature
- 4. Winter Forecast for 2001/02
- **5. Future Developments**

Weather and Climate

Weather - Day to day change in temperature, rainfall, windiness etc

Climate - Average state of the weather over periods from months to centuries

Seasonal Climate Decadal Climate Multi-Decadal Climate

Limits of Weather Prediction

"Claims of skilfull predictions of day-to-day weather beyond 1-2 weeks have no scientific basis and are either misinformed or calculated misrepresentations of true capabilities".

American Meteorological Society Policy Statement, 2001

Seasonal Weather Prediction

- The prediction of anomalies in climate over seasonal (1-3 months) periods of time.
- Skill possible because atmosphere is forced by large scale (and predictable) anomalies in sea surface temperature which evolve slowly.
- A major focus of MSSL Climate Physics Research:

See: http://forecast.mssl.ucl.ac.uk http://www.tropicalstormrisk.com

Earth's Surface Temperature Record

The Past 1,000 Years

Interannual Changes - ENSO

(Courtesy JPL)

- Occurring for >15,000 years
- El Niño = Warm ENSO La Niña = Cold ENSO
- 1997/98 major El Niño cost > £20 bn

England and Wales Winter Rainfall 1900/01-2000/01

<u>Central England Winter</u> Temperature 1900/01-2000/01

2. Impacts of Seasonal Weather on Business and Society

Industries Affected

 Anomalous seasonal weather affects the financial performance of <u>70%</u> of business and industry. Sectors affected include:

Insurance, power, construction, farming, tourism, retail, manufacturing and travel.

Anomalous weather also affects our health.

Atlantic Hurricanes

 Rank as the largest cause of US catastrophe loss (£3.5 bn per year 1925-2000)

 Floyd (pictured) had a damage bill of £3.3 billion.

European Winter Storms

UK Winter Temperature

For each 1°C the mean daily temperature for **England and** Wales drops below 18°C the **National Grid** supplies £200,000 worth of additional power.

Scarborough: 9/2/1991 (Image courtesy of "PA" News).

(Figure Courtesy of Lance Garrard, MetRisk)

3. Skill Examples

Forecast Models

Statistical principal component analysis of modes of sea surface temperature variability.

'True' hindcast skill for 1986-2000 assessed by constructing models always with prior data.

Leads from 0 to 12 months examined.

Skill Score and Uncertainty

Employ percentage improvement in RMSE over a climatological forecast (SS_{Clim} (%)):

SS_{Clim} = (1 - RMSE_{Fore}/RMSE_{Clim}) x 100

Compute 95% confidence intervals on skill using the bootstrap method.

La Niña Impacts

(Image Courtesy, NOAA)

<u>Tropical North Atlantic Forecast</u> <u>Skill for AS</u>

Lesser Antilles Strikes

Key Factors Behind Atlantic Hurricane Activity

JAS 925mb Wind and SST Anomalies: Active - Inactive Years

<u>Seasonal Typhoon Activity</u> Skill vs Lead Time

Tropical Storm Risk (TSR)

ROYAL &

RG

BENFIELD GREIG

GROUP PLC

"Seasonal Prediction of Tropical Cyclones"

- Three ocean basins
- New statistical and dynamical \bullet model techniques
- Land-falling tropical cyclones \bullet
- **Useful lead time**
- **Increase skill level**
- **Frequency and severity**

ESEARCH CENTRE

Met Office

Spatial results

BEN FIEL DIG REIG

Basins Under Research by TSR

Central England Temperature

Central England Temperature (*Monthly Time Series from 1665*)

Forecast Verification

	Period	CET (°C)
Forecast (± SD)	MAM 2001	8.59 ± 0.56
Actual	MAM 2001	8.50
Average (± SD)	MAM 1971-2000	8.55 ± 0.78

Scatter Plot and Skill of MAM CET Hindcasts 1976-2000

 MAM CET Model

 Skill 1976-2000

 PRMSE_{CL}
 32%

 PMAE_{CL}
 35%

 PVE
 48%

4. Winter 2001/02 Seasonal Forecast

North Atlantic Oscillation

+ve NAO

-ve NAO

(Figures Courtesy of Martin Visbeck, Columbia University)

(Figure Courtesy of Tim Osborn, University of East Anglia)

Predictor Mode 1 (PC2) *r* (SST PC2, NAO, n=51) = 0.43

Predictor Mode 2 (PC5)

r (SST PC5, NAO, n=51) = 0.38

Seasonal NAO Predictability 1950/1 -2000/01

Correlation Skill of hindcasts for three NAO indices

37

Seasonal NAO Predictability 1986/7 -2000/1

Correlation Skill for Independent Forecasts

	<u>CRU NAO</u>	<u>CPC NAO</u>	MSLP NAO
October	0.51	0.65	0.57
November	0.52	0.69	0.48

Winter 2001/02 NAO Forecast

CRU NAO Index = 0.7 +/- 1.0

Thus the coming winter is expected to be a **neutral NAO winter** with temperature and rainfall close to the last 10-year average.

Conclusions

- Seasonal climate prediction is an innovation in meteorology.
- Forecast skill is already significant at leads of a few months.
- There are sound grounds for expecting this skill will improve with further research.
- With the earnings of 70% of industry sensitive to seasonal weather, business executives will be well advised to monitor developments in seasonal forecasting over the next few years.